Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 13(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35735828

RESUMO

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) was recorded for the first time in 2016 attacking maize fields in central and west Africa. Soon after, several other regions and countries have reported the pest in almost the entire sub-Saharan Africa. In the present study, we assumed that (i) a variety of alternative plant species host FAW, especially during maize off-season, (ii) a wide range of local parasitoids have adapted to FAW and (iii) parasitoid species composition and abundance vary across seasons. During a two-year survey (from June 2018 to January 2020), parasitoids and alternative host plants were identified from maize and vegetable production sites, along streams and lowlands, on garbage dumps and old maize fields in southern and partly in the central part of Benin during both maize growing- and off-season. A total of eleven new host plant species were reported for the first time, including Cymbopogon citratus (de Candolle) Stapf (cultivated lemon grass), Bulbostylis coleotricha (A. Richard) Clarke and Pennisetum macrourum von Trinius (wild). The survey revealed seven parasitoid species belonging to four families, namely Platygastridae, Braconidae, Ichneumonidae, and Tachinidae associated with FAW on maize and alternative host plants. The most abundant parasitoid species across seasons was the egg parasitoid Telenomus remus (Nixon) (Hymenoptera: Platygastridae). These findings demonstrate FAW capability to be active during the maize off-season in the selected agro-ecologies and provide baseline information for classical and augmentative biocontrol efforts.

2.
Insects ; 12(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668670

RESUMO

The natural occurrence of entomopathogenic fungal endophytes in sugarcane (Saccharum officinarum) and in soil samples from sugarcane fields was evaluated in Chikwawa District, southern Malawi. Fungi from soil were isolated by baiting using Galleria mellonella larva. Fungal endophytes were isolated from surface-sterilized plant tissue sections. Forty-seven isolates resembled the genus Beauveria, 9 isolates were Metarhizium, and 20 isolates were Isaria. There was no significant difference in the number and type of fungal isolates collected from soil and from plant tissue. There was, however, a significant difference in the part of the plant where fungal species were isolated, which fungal species were isolated, and the number of fungal species isolated at each location. Phylogenetic analysis of 47 Beauveria isolates based on DNA sequencing of the Bloc intergenic region indicated that these isolates all belonged to B. bassiana and aligned with sequences of B. bassiana isolates of African and Neotropical origin. The Malawian B. bassiana isolates formed a distinct clade. No larvae died from infestation by multiple fungi. To the best of our knowledge, this is the first report of B. bassiana and Isaria spp. occurring naturally as endophytes in sugarcane. Further, it is the first report of B. bassiana, Isaria spp., and Metarhizium spp. in the soil of sugarcane fields in Africa.

3.
Insects ; 11(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545796

RESUMO

Several important vegetable crops grown outdoors in temperate climates in Europe can be damaged by the root-feeding larvae of Diptera (Delia radicum, Delia floralis, Chamaepsila rosae, Delia platura, Delia florilega, Delia antiqua). Knowledge of pest insect phenology is a key component of any Integrated Pest Management (IPM) strategy, and this review considers the methods used to monitor and forecast the occurrence of root-feeding flies as a basis for decision-making by growers and the ways that such information can be applied. It has highlighted some current management approaches where such information is very useful for decision support, for example, the management of C. rosae with insecticidal sprays and the management of all of these pests using crop covers. There are other approaches, particularly those that need to be applied at sowing or transplanting, where knowledge of pest phenology and abundance is less necessary. Going forward, it is likely that the number of insecticidal control options available to European vegetable growers will diminish and they will need to move from a strategy which often involves using a single 'silver bullet' to a combination of approaches/tools with partial effects (applied within an IPM framework). For the less-effective, combined methods, accurate information about pest phenology and abundance and reliable decision support are likely to be extremely important.

4.
Insects ; 11(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365691

RESUMO

Plant-associated microbes may induce plant defenses against herbivores. Plants, in turn, can attract natural enemies, such as predators, using herbivore-induced plant volatiles. Intricate communication occurs between microorganisms, plants, and insects. Given that many aspects related to mechanisms involved in this symbiotic system remain unknown, we evaluated how beneficial soil-borne microorganisms can affect the interactions between plants, herbivores, and natural enemies. For this study, we established a multitrophic system composed of the predatory earwig Doru luteipes (Dermaptera: Forficulidae), arugula (Eruca sativa, Brassicaceae) as the host plant, Plutella xylostella (Lepidoptera: Plutellidae) larvae as a specialist herbivore, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae as a generalist herbivore, and Bacillus amyloliquefaciens as the plant growth-promoting rhizobacteria (PGPR), in a series of nocturnal olfactometry experiments. By assessing earwig preference towards herbivore-induced and PGPR-inoculated plants in different combinations, we showed that the interaction between rhizobacteria, plants, and herbivores can affect the predatory earwig's behavior. Furthermore, we observed a synergistic effect in which earwigs were attracted by plants that presented as PGPR inoculated and herbivore damaged, for both specialist and generalist herbivores. Our findings help fill the important knowledge gap regarding multitrophic interactions and should provide useful guidelines for their application to agricultural fields.

5.
Sci Rep ; 8(1): 18027, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575786

RESUMO

All tropically adapted humped cattle (Bos indicus or "zebu"), descend from a domestication process that took place >8,000 years ago in South Asia. Here we present an intercontinental survey of Y-chromosome diversity and a comprehensive reconstruction of male-lineage zebu cattle history and diversity patterns. Phylogenetic analysis revealed that all the zebu Y-chromosome haplotypes in our dataset group within three different lineages: Y3A, the most predominant and cosmopolitan lineage; Y3B, only observed in West Africa; and Y3C, predominant in South and Northeast India. The divergence times estimated for these three Zebu-specific lineages predate domestication. Coalescent demographic models support either de novo domestication of genetically divergent paternal lineages or more complex process including gene flow between wild and domestic animals. Our data suggest export of varied zebu lineages from domestication centres through time. The almost exclusive presence of Y3A haplotypes in East Africa is consistent with recent cattle restocking in this area. The cryptic presence of Y3B haplotypes in West Africa, found nowhere else, suggests that these haplotypes might represent the oldest zebu lineage introduced to Africa ca. 3,000 B.P. and subsequently replaced in most of the world. The informative ability of Interspersed Multilocus Microsatellites and Y-specific microsatellites to identify genetic structuring in cattle populations is confirmed.


Assuntos
Agricultura , Migração Animal/fisiologia , Bovinos/genética , Comércio , Domesticação , Variação Genética/fisiologia , África/epidemiologia , Agricultura/estatística & dados numéricos , Animais , Animais Domésticos , Ásia/epidemiologia , Bovinos/classificação , Comércio/estatística & dados numéricos , Fazendas/estatística & dados numéricos , Haplótipos , Masculino , Repetições de Microssatélites/genética , Filogenia , Dinâmica Populacional , Cromossomo Y/genética
6.
Insects ; 9(3)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932153

RESUMO

Sugarcane is one of the most valuable crops in the world. Native and exotic Lepidopteran stemborers significantly limit sugarcane production. However, the identity and genetic diversity of stemborers infesting sugarcane in Malawi is unknown. The main objectives for this study were to identify and determine genetic diversity in stemborers infesting sugarcane in Malawi. We conducted field surveys between June 2016 and March 2017 in the Lower Shire Valley district of Chikwawa and Nsanje, southern Malawi. Molecular identification was based amplification the partial cytochrome oxidase subunit I (COI) gene region. Phylogenetic trees for sequences were generated and published GenBank accessions for each species were constructed. We found that Malawi Busseola fusca (Lepidoptera: Noctuidae) specimens belonged to clade II, Spodoptera frugiperda sp. 1 (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Crambidae) were infesting sugarcane. Interspecific divergence ranged from 8.7% to 15.3%. Intraspecific divergence was highest for B. fusca, 3.6%. There were eight haplotypes for B. fusca, three for S. frugiperda and three for C. partellus. The importance of accurate species identification and genetic diversity on stemborer management is presented.

7.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625979

RESUMO

Pathogenic soft rot Enterobacteriaceae (SRE) belonging to the genera Pectobacterium and Dickeya cause diseases in potato and numerous other crops. Seed potatoes are the most important source of infection, but how pathogen-free tubers initially become infected remains an enigma. Since the 1920s, insects have been hypothesized to contribute to SRE transmission. To validate this hypothesis and to map the insect species potentially involved in SRE dispersal, we have analyzed the occurrence of SRE in insects recovered from potato fields over a period of 2 years. Twenty-eight yellow sticky traps were set up in 10 potato fields throughout Norway to attract and trap insects. Total DNA recovered from over 2,000 randomly chosen trapped insects was tested for SRE, using a specific quantitative PCR (qPCR) TaqMan assay, and insects that tested positive were identified by DNA barcoding. Although the occurrence of SRE-carrying insects varied, they were found in all the tested fields. While Delia species were dominant among the insects that carried the largest amount of SRE, more than 80 other SRE-carrying insect species were identified, and they had different levels of abundance. Additionally, the occurrence of SRE in three laboratory-reared insect species was analyzed, and this suggested that SRE are natural members of some insect microbiomes, with herbivorous Delia floralis carrying more SRE than the cabbage moth (Plutella xylostella) and carnivorous green lacewing larvae (Chrysoperla carnea). In summary, the high proportion, variety, and ubiquity of insects that carried SRE show the need to address this source of the pathogens to reduce the initial infection of seed material.IMPORTANCE Soft rot Enterobacteriaceae are among the most important pathogens of a wide range of vegetables and fruits. The bacteria cause severe rots in the field and in storage, leading to considerable harvest losses. In potato, efforts to understand how soft rot bacteria infect and spread between healthy plants have been made for over a century. Early on, fly larvae were implicated in the transmission of these bacteria. This work aimed at investigating the occurrence of soft rot bacteria in insects present in potato fields and at identifying the species of these insects to better understand the potential of this suspected source of transmission. In all tested potato fields, a large proportion of insects were found to carry soft rot bacteria. This suggests a need to give more weight to the role of insects in soft rot ecology and epidemiology to design more effective pest management strategies that integrate this factor.


Assuntos
Enterobacteriaceae/isolamento & purificação , Insetos/microbiologia , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Animais , Código de Barras de DNA Taxonômico , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Insetos/classificação , Microbiota , Noruega , Pectobacterium/genética , Pectobacterium/isolamento & purificação , Pectobacterium/patogenicidade , Controle de Pragas , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
8.
Nat Plants ; 3: 17076, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28581507

RESUMO

This study sheds light on the agricultural economy that underpinned the emergence of the first urban centres in northern Mesopotamia. Using δ13C and δ15N values of crop remains from the sites of Tell Sabi Abyad, Tell Zeidan, Hamoukar, Tell Brak and Tell Leilan (6500-2000 cal bc), we reveal that labour-intensive practices such as manuring/middening and water management formed an integral part of the agricultural strategy from the seventh millennium bc. Increased agricultural production to support growing urban populations was achieved by cultivation of larger areas of land, entailing lower manure/midden inputs per unit area-extensification. Our findings paint a nuanced picture of the role of agricultural production in new forms of political centralization. The shift towards lower-input farming most plausibly developed gradually at a household level, but the increased importance of land-based wealth constituted a key potential source of political power, providing the possibility for greater bureaucratic control and contributing to the wider societal changes that accompanied urbanization.


Assuntos
Agricultura/história , Cidades/história , Urbanização/história , Dióxido de Carbono/química , Isótopos de Carbono , Produtos Agrícolas/química , História Antiga , Humanos , Mesopotâmia , Isótopos de Nitrogênio , Datação Radiométrica
9.
Insect Sci ; 21(1): 103-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23956069

RESUMO

The turnip fly, Delia floralis Fallén (Diptera: Anthomyiidae) is an important insect pest of brassica vegetable crops in the holarctic region. Different populations have strongly varying temperature requirements for fly emergence, a challenge for accurate prediction of activity. This study focused on diapause development in one early and one late emerging phenotype. The physiological state after various treatments was deduced from emergence data. Our results showed a slow diapause progression at chilling conditions for both populations and diapause ended about 7 months after pupae were formed for the early population. For the late population held at 4°C diapause did not end, no matter how long the duration of chilling. These pupae required a period with elevated temperatures above 6°C to continue development. At constant non-chilling conditions (18°C) from the time pupae were formed both populations completed diapause most rapidly. These results indicate that chilling delayed, rather than accelerated development and was not a prerequisite for diapause development. For post-diapause, results indicated a linear relationship between rate of development and temperature within the range of 6-18°C and a theoretical base temperature for development of about 2°C for both populations. In conclusion, D. floralis pupae are in diapause throughout a long winter period, and delayed emergence of the late population appears to be caused by prolonged diapause regulated by a developmental temperature threshold. The study has added information on the biology of turnip fly populations, a prerequisite for improved pest control.


Assuntos
Dípteros/crescimento & desenvolvimento , Animais , Brassica/parasitologia , Temperatura Baixa , Dípteros/fisiologia , Metamorfose Biológica , Fenótipo , Doenças das Plantas/parasitologia , Pupa/crescimento & desenvolvimento , Estações do Ano
10.
J Agric Food Chem ; 61(11): 2831-8, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23414489

RESUMO

The effect of different degrees of attack by carrot psyllid (Trioza apicalis) on quality parameters of carrots was studied in field experiments for two years. Treatments were different degrees of physical insect protection by floating row cover. An increasing attack level of psyllids showed an enhancement effect on the antioxidant capacity (ORAC), content of falcarindiol, 6-methoxymellein, and terpenes, and scores for bitter taste, chemical flavor, terpene flavor, and toughness. Carrot psyllid attack decreased the yield, total sugar, fructose, glucose, and sensory attributes sweet taste, color hue, color strength, crispiness, and juiciness. Carrot plants at 8-10 weeks of age tolerated attack by psyllids at low levels (2% leaves with curling or discoloration).


Assuntos
Antioxidantes/análise , Daucus carota/química , Di-Inos/análise , Álcoois Graxos/análise , Hemípteros/fisiologia , Isocumarinas/análise , Doenças das Plantas/parasitologia , Extratos Vegetais/análise , Terpenos/análise , Animais , Daucus carota/parasitologia , Humanos , Paladar
11.
Appl Microbiol Biotechnol ; 97(4): 1601-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22543421

RESUMO

A novel strain exhibiting entomopathogenic and chitinolytic activity was isolated from mangrove marsh soil in India. The isolate was identified as Brevibacillus laterosporus by phenotypic characterization and 16S rRNA sequencing and designated Lak1210. When grown in the presence of colloidal chitin as the sole carbon source, the isolate produced extracellular chitinases. Chitinase activity was inhibited by allosamidin indicating that the enzymes belong to the family 18 chitinases. The chitinases were purified by ammonium sulfate precipitation followed by chitin affinity chromatography yielding chitinases and chitinase fragments with 90, 75, 70, 55, 45, and 25 kDa masses. Mass spectrometric analyses of tryptic fragments showed that these fragments belong to two distinct chitinases that are almost identical to two putative chitinases, a 89.6-kDa four-domain chitodextrinase and a 69.4-kDa two-domain enzyme called ChiA1, that are encoded on the recently sequenced genome of B. laterosporus LMG15441. The chitinase mixture showed two pH optima, at 6.0 and 8.0, and an optimum temperature of 70 °C. The enzymes exhibited antifungal activity against the phytopathogenic fungus Fusarium equiseti. Insect toxicity bioassays with larvae of diamondback moths (Plutella xylostella), showed that addition of chitinases reduced the time to reach 50 % mortality upon infection with non-induced B. laterosporus from 3.3 to 2.1 days. This study provides evidence for the presence of inducible, extracellular chitinolytic enzymes in B. laterosporus that contribute to the strain's antifungal activity and insecticidal activity.


Assuntos
Antifúngicos/farmacologia , Proteínas de Bactérias/farmacologia , Brevibacillus/enzimologia , Quitinases/farmacologia , Inseticidas/farmacologia , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brevibacillus/classificação , Brevibacillus/genética , Brevibacillus/isolamento & purificação , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Estabilidade Enzimática , Fusarium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Índia , Inseticidas/química , Inseticidas/metabolismo , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Microbiologia do Solo
12.
Phytochemistry ; 72(7): 538-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21315385

RESUMO

In this review, we provide an overview of the role of glucosinolates and other phytochemical compounds present in the Brassicaceae in relation to plant protection and human health. Current knowledge of the factors that influence phytochemical content and profile in the Brassicaceae is also summarized and multi-factorial approaches are briefly discussed. Variation in agronomic conditions (plant species, cultivar, developmental stage, plant organ, plant competition, fertilization, pH), season, climatic factors, water availability, light (intensity, quality, duration) and CO(2) are known to significantly affect content and profile of phytochemicals. Phytochemicals such as the glucosinolates and leaf surface waxes play an important role in interactions with pests and pathogens. Factors that affect production of phytochemicals are important when designing plant protection strategies that exploit these compounds to minimize crop damage caused by plant pests and pathogens. Brassicaceous plants are consumed increasingly for possible health benefits, for example, glucosinolate-derived effects on degenerative diseases such as cancer, cardiovascular and neurodegenerative diseases. Thus, factors influencing phytochemical content and profile in the production of brassicaceous plants are worth considering both for plant and human health. Even though it is known that factors that influence phytochemical content and profile may interact, studies of plant compounds were, until recently, restricted by methods allowing only a reductionistic approach. It is now possible to design multi-factorial experiments that simulate their combined effects. This will provide important information to ecologists, plant breeders and agronomists.


Assuntos
Agricultura/economia , Brassicaceae/fisiologia , Clima , Glucosinolatos/metabolismo , Saúde , Animais , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/metabolismo , Brassicaceae/efeitos da radiação , Glucosinolatos/química , Humanos , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...